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I propose to use Hamiltonians with both two-dimensional and three-dimensional kinetic
terms for the description of two-dimensional systems in physics. As a model system the
evolution of three-dimensional wavefunctions in the presence of an infinitely thin layer
is studied. The model predicts distance laws for correlation functions which interpolate
between two-dimensional and three-dimensional behavior. It also predicts that in certain
cases transmission probabilities through thin layers should depend not only on the
transverse, but also on the longitudinal momentum of the infalling particles. The model
also yields a static potential which interpolates between the two-dimensional logarithmic
potential at small distances and the three-dimensional 1/r -potential at large distances.
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1. INTRODUCTION

Two dimensions played a prominent role in the development of physics in the
last 20 years.

On the experimental side this was driven, e.g., by the needs of very large-scale
integration, by applications of semiconducting layer structures, by exploitations of
surface catalytic effects, and by the development of atomic-scale surface analysis
and manufacturing tools like scanning tunneling microscopy and atomic force
microscopy, to mention only a few developments in this area.

On the theoretical side, interest in two-dimensional field theories was largely
driven by string theory (Greenet al., 1987), where the fundamental string ex-
citations are described by covariant two-dimensional field theories, and by the
realization that in two-dimensional critical systems with a rotational symmetry,
scaling symmetry may be elevated to full conformal invariance (Belavinet al.,
1984).

The purpose of the present paper is to point out that recent developments
in the mathematical formulation of brane world models may also inspire new
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developments in the physics of low-dimensional systems, and help us to ac-
quire a better understanding of the transition between three-dimensional and two-
dimensional behavior in these systems.

The present work was specifically motivated by the brane world model of
Dvali, Gabadadze and Porrati, who recently proposed and analyzed a model that
combined gravity on a (3+ 1)-dimensional manifold (a “3-brane”) with gravity
in an ambient (4+ 1)-dimensional bulk (Dvaliet al., 2000). They observed that
the combination of gravity in different dimensions yields a gravitational potential
which interpolates continuously between the three-dimensional−1/r potential at
small distances and the four-dimensional−1/r 2 potential at large distances, with
a transition scalèDGP'm2

3/m3
4 set by the ratios of the reduced Planck masses

on the brane and in the bulk. Since we are not concerned with gravity in the
present paper I will not explicitly write down the model in terms of intrinsic
and extrinsic curvature terms, see Dick (2001), but instead refer to the related
model of Dvaliet al.(2001), which combines a Maxwell term in Minkowski space
(coordinatesxµ={t, r}) with a Maxwell term in an ambient (4+ 1)-dimensional
bulk (coordinatesxM ={t, r , x⊥}):

S= − 1

4q2
3

∫
dt
∫

d3r FµνFµν

∣∣∣∣
x⊥=0

− 1

4q2
4

∫
dt
∫

d3r
∫

dx⊥FM N F M N . (1)

The resulting Coulomb potential on the (3+ 1)-dimensional Minkowski space is
(Dvali et al., 2001)

A0(r ) = q3

4πr

[
cos

(
2q2

3

q2
4

r

)
− 2

π
cos

(
2q2

3

q2
4

r

)
Si

(
2q2

3

q2
4

r

)

+ 2

π
sin

(
2q2

3

q2
4

r

)
ci

(
2q2

3

q2
4

r

)]
, (2)

with the sine and cosine integrals

Si(x) =
∫ x

0
dξ

sinξ

ξ
, ci(x) = −

∫ ∞
x

dξ
cosξ

ξ
.

The corresponding dynamical potentials on the brane and in the bulk are discussed
in Dick and McArthur (2002).

The ratio of gauge couplings defines a length scale

` = q2
4

2q2
3

, (3)

and A0 interpolates between a three-dimensional distance law at short distances
and a four-dimensional distance law at large distances



P1: GUB

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465838 June 10, 2003 16:8 Style file version May 30th, 2002

Hamiltonians and Green’s Functions 571
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Action principles of the kind (1) were denoted as dimensionally hybrid action
principles in Dick (2001).

Of course, this does not simply carry over to low-dimensional systems in
condensed matter or statistical physics: Dimensionally hybrid action principles
would not be a suitable tool for model building in theoretical investigations of
these systems because time derivatives generically will appear only as bulk terms
in the Lagrangian of a particle interacting with a low-dimensional structure.

Therefore the main proposal of the present work is to usedimensionally hybrid
Hamiltoniansin model building for low-dimensional systems. In the sequel it will
be shown that a combination of two-dimensional and three-dimensional terms
and the ensuing interpolating correlation functions provide interesting new results
on the transition from two-dimensional to three-dimensional behavior in low-
dimensional systems.

I will use dimensionally hybrid Hamiltonians in particular to discuss nonrela-
tivistic particles interacting with a thin layer. The system becomes a dimensionally
hybrid system with a specifically two-dimensional component through the assump-
tion that particles in the layer have a kinetic energy different from particles outside
of the layer, e.g., as a consequence of mass renormalizationM→m because of
the interaction of the particles with the components of the layer.

In the next section I will show in a simple model that transmission probabilities
through thin layers in this class of models depend also on the momentum parallel to
the layer ifµ=m(L)/L|L→0 remains finite. The discussion of Green’s functions in
these models will be the subject of Sections 3 and 4. Section 3 contains in particular
a potential which interpolates between two-dimensional and three-dimensional
distance laws.

2. DIMENSIONALLY HYBRID HAMILTONIANS
AND GREEN’S FUNCTIONS

To investigate implications of dimensionally hybrid Hamiltonians for the
description of the interaction of particles with a thin layer we assume in the present
section that the layer is planar and homogeneous and therefore generates a potential
U (z), wherez is transverse to the layer.

In realistic two-dimensional systems particles are not strictly bound to the
layer, and the effective particle mass in the layer may be changed because of
interactions. This motivates the following Hamiltonian for particles of massM in
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the presence of the layer

H = h2

2µ

∫
d2x∇ψ+ · ∇ψ

∣∣∣∣
z=0

+
∫

d2x
∫

dz

(
h2

2M
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ)+ ψ+Uψ

)
. (4)

Here and in the sequel all vectors are two-dimensional vectors parallel to the layer.
The assumption behind the Hamiltonian (4) is that the same fieldψ may

describe, e.g., free electrons in the bulk and large polarons (see, e.g., Kittel (1987),
Devreese (1995) or Madelung (1996) for introductions to polarons in solids) or
other collective excitations involving conduction electrons in the layer. The pa-
rameterµ has dimensions of mass per length, and in a limiting procedure from
layers of finite thicknessL would correspond to

µ = lim
L→0

m(L)

L
, (5)

wherem(L) would be the mass of the modes in the layer.
The corresponding equation of motion for stationary single-(quasi)particle

wavefunctions is

Eψ(x, z) = −δ(z)
h2

2µ
1ψ(x, 0)− h2

2M

(
1+ ∂2

z

)
ψ(x, z)+U (z)ψ(x, z). (6)

The Fourieransatz

ψ(x, z) = 1

2π

∫
d2kψ(k, z) exp(ik · x) (7)

yields the separated equation(
E − h2k2

2M

)
ψ(k, z) = − h2

2M
∂2

zψ(k, z)+U (z)ψ(k, z)+ δ(z)
h2k2

2µ
ψ(k, 0).

(8)
Every solvable model of one-dimensional quantum mechanics gives a solution to
this class of layer models, with the kinetic term of the layer modes only generating
a cusp proportional to (M/µ)k2 in lnψ(k, z).

Obviously, the large longitudinal momentum modes are strongly affected by
the existence of layer modes, but we will see in a moment that the two-dimensional
kinetic term can also have a strong impact on modes with small longitudinal
momentum (see Fig. 1).

It is a trivial exercise to adapt solutions of one-dimensional quantum mechan-
ics to the cusp imposed by the layer modes, but it may be worthwhile to write down
the modifications of the transmission coefficient because of the layer modes when
the layer potential represents a work function:U (z)=−wδ(z). The transmission
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Fig. 1. Contribution of a virtual planar mode to a particle penetrating a thin homogeneous layer.

coefficient for an infalling particle of momentum{k, k⊥} is

T(k, k⊥) =
[

1+ M2

k2
⊥

(
w

h2 −
k2

2µ

)2
]−1

, (9)

i.e. the layer modes increase the transmission probability for low longitudinal
momentum modes 0< h2k2 < 4µw, and decrease the transmission probabilities
for the modes of higher longitudinal momentum.

This model also predicts a resonance in transmission for a certain valueh2k2=
2µw of thelongitudinalmomentum. This is as a genuine consequence of the two-
dimensional kinetic term in (4) and may be the simplest way to test the viability
of the idea of dimensionally hybrid Hamiltonians in low-dimensional systems.

Obviously, the prediction of dependence of transmission probabilities on lon-
gitudinal momenta requires finiteness of the parameterµ (5), i.e., a derivation of the
“phenomenological” Hamiltonian (4) from a limiting procedure of purely three-
dimensional models will require a thorough study of finite size effects on mass
renormalization in solids.

3. CORRELATIONS ON A LAYER

A model similar to (4) allows for a neat discussion of the impact of com-
binations of kinetic terms from different dimensions on the “two-dimensional”
correlation functions on the layer.

For this we assume that the layer is not necessarily homogeneous, but gener-
ates a strongly localized potential

V(x, z) = u(x)δ(z)
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along the layer

H = h2

2M

∫
d2x

∫
dz
(∇ψ+ · ∇ψ + ∂zψ

+ · ∂zψ
)

+
∫

d2x
(

h2

2µ
∇ψ+ · ∇ψ + ψ+uψ

)∣∣∣∣
z= 0

. (10)

The generating functional for correlation functions on the layer is

Z[ j , j+] =
∫

dψdψ+ exp

(
−βH [ψ, ψ+]

−
∫

d2x[ψ+(x, 0) j (x)+ j+(x)ψ(x, 0)]

)
= exp

(
−β

∫
d2x

δ

δ j (x)
u(x)

δ

δ j+(x)

)
Z0[ j , j+] (11)

with

Z0[ j , j+] ∝ exp

(
2M

h2β

∫
d2x

∫
d2x′ j+(x)G(x− x′, 0) j (x′)

)
. (12)

As usualδ/δ j acts from the right ifψ is fermionic.
Since (10) is a free theory from a field theory point of view, the “two-

dimensional” correlations in it can be calculated from tree-level diagrams, which
involve only the restriction of the free Green’s functionG(x− x′, z) to the layer
and insertions of the layer potential.

The free Green’s function used in (12) satisfies(
1+ ∂2

z

)
G(x, z)+ 2`δ(z)1G(x, 0)= −δ(x)δ(z) (13)

where

2` = M

µ
. (14)

Theansatz

G(x, z) = 1

(2π )3

∫
d2k

∫
dk⊥G(k, k⊥) exp[i(k · x+ k⊥z)] (15)

yields (
k2+ k2

⊥
)
G(k, k⊥)+ `

π
k2
∫

dk′⊥G(k, k′⊥) = 1. (16)

This determines thek⊥-dependence of the propagator

G(k, k⊥) = f (k)

k2+ k2
⊥
. (17)
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With

1

π

∫ ∞
−∞

dk′⊥
1

k2+ k
′2
⊥
= 1

k

we find the Green’s function

G(k, k⊥) = 1

(1+ k`)
(
k2+ k2

⊥
) (18)

or

G(k, z) = 1

2k(1+ `k)
exp(−k|z|). (19)

Using the conventions of Abramowitz and Stegun (1972) for Bessel and
Struve functions, the solution of (13) can be written as

G(x, z) = 1

8π2

∫ ∞
0

dk
∫ 2π

0
dϕ

exp[k(ir cosϕ − |z|)]
1+ k`

= 1

4π

∫ ∞
0

dk
exp(−k|z|)

1+ k`
J0(kr ). (20)

This can be thought of as the electrostatic potential of a unit charge on the layer,
if the fields which are continuous across the layer make a special contribution to
the Hamiltonian of the electromagnetic field

H [F ] = `
∫

d2x
(
E2+ B2

⊥
)+ 1

2

∫
d2x

∫
dz
(
E2+ E2

⊥ + B2+ B2
⊥
)
, (21)

e.g. as a consequence of a nonvanishing limit of

2` = lim
L→0

(εr L).

Hereεr is the relative permittivity of the layer andL its transverse extension.
The perturbation series (11) and (12) requires the Green’s function on the

layer, which can be expressed as a linear combination of a Struve function and a
Bessel function of the second kind

8(x) = G(x, z)|z= 0 = 1

8`

[
H0

(
r

`

)
− Y0

(
r

`

)]
. (22)

This interpolates between two-dimensional and three-dimensional distance laws

r ¿ ` : 8(x) = 1

4π`

[
−γ − ln

(
r

2`

)
+ r

`
+O

(
r 2

`2

)]
,

r À ` : 8(x) = 1

4πr

[
1− `

2

r 2
+O

(
`4

r 4

)]
.

8(x) along with the limiting cases is plotted in Fig. 2.
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Fig. 2. The solid line is the Green’s function (22) on the
layer as a function ofx= r/`, in units of`−1. The upper
dashed line is the three-dimensional 1/4πr potential,
and the lower dashed line is the two-dimensional loga-
rithmic potential.

Because of strong band curvature the ratios of conduction band masses to
the mass of free electrons can be of orderm/M ' 10−2, so one may hope that in
thin semiconducting layers of thicknessL the parameter̀ is of order`' 102L.
Two-dimensional distance laws for correlation functions might then be realized
up to distances of order 10L, and intermittent behavior for distances between 10L
and 200L. For a possible realization of (22) as an electromagnetic potential in thin
layers, semiconducting compounds involving Pb might be the best bet due to their
high relative permittivities of orderεr ∼ 102− 103 (Landolt-Börnstein, 1983). The
corresponding field strength on the layer is (Fig. 3)

−∂r8(x) = 1

8`2

[
H1

(
r

`

)
− Y1

(
r

`

)
− 2

π

]
. (23)

This reduction of the force between charges in a thin dielectric layer with
finite 2̀ = limL→0(εr L) can pictorially be understood as a consequence of the
fact that field lines are refracted away from the layer when they leave the layer.
This reduces the field lines, e.g., between two opposite charges at short distances,
since the field lines cannot re-enter the layer on short scales, whereas for large
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Fig. 3. The solid line is the field strength per charge (23)
on the layer as a function ofx= r/`, in units of`−2.
The dashed line approaching the solid line forx < 1 is
the two-dimensional 1/4π`r field, and the other dashed
line is the three-dimensional 1/4πr 2 field.

separation of the two charges along the layer reentry renders the refraction effect
negligible.

4. THE GREEN’S FUNCTION FOR SCATTERING FROM
TWO-DIMENSIONAL POTENTIALS ON THE LAYER

The stationary wave equation from (10) is

Eψ(x, z) = δ(z)

(
− h2

2µ
1+ u(x)

)
ψ(x, 0)− h2

2M

(
1+ ∂2

z

)
ψ(x, z). (24)

We have already noticed that this can be solved exactly foru(x)= constant.
In discussing scattering of bulk particles from the layer in the model (10) we

could proceed using the ordinary three-dimensional Green’s function for scattering
of waves of energyE= h2K 2/2M and treat the full two-dimensional contribution
to Eq. (24) as a perturbation. However, here I would rather like to treat only the layer
potentialu(x) as a perturbation. This has the virtue of reducing the perturbation
for large longitudinal momenta.
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The relevant unperturbed wave is then

ψ0(x, z) = 1
√

2π
3 exp(iK ‖ · x)

[
2(−z)

(
exp(iK⊥z)+ K 2

‖`

iK⊥ − K 2
‖`

exp(−iK⊥z)

)
+2(z)

K⊥
K⊥ + iK 2

‖`
exp(iK⊥z)

]
(25)

where again the definition (14) was used.
The relevant Green’s functionGK for propagation of bulk plane waves of

energy

E = h2K 2

2M
= h2

2M

(
K2
‖ + K 2

⊥
)

has to satisfy(
1+ ∂2

z + K 2
)
GK (x, z)+ 2`δ(z)1GK (x, 0)= −δ(x)δ(z), (26)

and the solution proceeds similarly to the solution of (13). The Fourieransatz(15)
yields (

k2+ k2
⊥ − K 2

)
GK (k, k⊥)+ `

π
k2
∫

dk′⊥GK (k, k′⊥) = 1, (27)

which determines thek⊥-dependence of the propagator

GK (k, k⊥) = f (k)

k2+ k2
⊥ − K 2

. (28)

At this stage the possibility of poles complicates the calculation slightly. In evalu-
ating the integral in (27) with (28) fork < K we have to make a judicious choice on
how to shift the poles or the integration path atk⊥ = ±

√
K 2− k2, corresponding

to correct physical boundary conditions onGK (k, z). The correct choice turns out
to bek⊥ = ±(

√
K 2− k2+ iε) sinceGK (k, z) is supposed to describe outgoing

scattered waves from the layer ifk < K , i.e. we have

GK (k, k⊥) = f (k)

k2+ k2
⊥ − K 2− iε

= f (k)

(
P 1

k2+ k2
⊥ − K 2

+ iπδ
(
k2+ k2

⊥ − K 2
))
. (29)

With

1

π

∫ ∞
−∞

dk′⊥
1

k2+ k
′2
⊥ − K 2− iε

= 2(k2− K 2)√
k2− K 2

+ i
2(K 2− k2)√

K 2− k2
,

we find the Green’s function at large longitudinal wavelengthk < K

GK (k, k⊥) =
√

K 2− k2

(
√

K 2− k2+ ik2`)
(
k2+ k2

⊥ − K 2− iε
) , (30)
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GK (k, z) = 1

2k2`− 2i
√

K 2− k2
exp

(
i
√

K 2− k2|z|), (31)

while the short longitudinal wavelength part is

GK (k, k⊥) =
√

k2− K 2(√
k2− K 2+ k2`

)(
k2+ k2

⊥ − K 2− iε
) , (32)

GK (k, z) = 1

2
√

k2− K 2+ 2k2`
exp

(
−
√

k2− K 2|z|
)
. (33)

Of course, the Green’s function again reduces to the usual three-dimensional result
for `→ 0, i.e., if the modes in the layer become so heavy that they decouple.

With an incoming plane wave, the integral equation following from (24) and
(26) is

ψ(x, z) = ψ0(x, z)− 2M

h2

∫
d2x′GK (x− x′, z)u(x′)ψ(x′, 0). (34)

In a Born approximation this yields with (25)

ψ(x, z) = ψ0(x, z)− 2M
√

2π
7
h2

K⊥
K⊥ + iK 2

‖`

∫
d2k exp(ik · x)GK (k, z)u(k − K ‖),

(35)

where the normalization of the Fourier transformed layer potential is

u(q) =
∫

d2x exp(−iq · x)u(x).

Equation (35) together with (33) implies that no particular scattering wave is gen-
erated by the short wavelength components at|q|< K ‖ +

√
K 2
‖ + K 2

⊥ of the layer
potential, which can be understood as a consequence of the limited resolving power
of the external wave. However, beyond that the`-dependence of (31) and (35) im-
plies that the two-dimensional kinetic term in (10) reduces potential scattering at
largeK‖.

5. LAGRANGIANS IN THE PRESENCE OF THIN LAYERS

The Hamiltonians (4) and (10) correspond to a class of models

H =
∫

d2x
(

h2

2µ
∇ψ+ · ∇ψ + ψ+uψ

)∣∣∣∣
z=0

+
∫

d2x
∫

dz

(
h2

2M

(∇ψ+ · ∇ψ + ∂zψ
+ · ∂zψ

)+ ψ+Uψ

)
(36)

for the description of particles in the presence of thin layers.



P1: GUB

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465838 June 10, 2003 16:8 Style file version May 30th, 2002

580 Dick

For completeness we also record the corresponding Lagrangians

L = −
∫

d2x
(

h2

2µ
∇ψ+ · ∇ψ + ψ+uψ

)∣∣∣∣
z=0

+
∫

d2x
∫

dz

(
i h

2
(ψ+ψ̇ − ψ̇+ψ)

− h2

2M

(∇ψ+ · ∇ψ + ∂zψ
+ · ∂zψ

)− ψ+Uψ

)
, (37)

which are explicitly different from what one would get if one were to simply invoke
a naive non-relativistic limit of brane models. The latter would give additional time
derivatives confined to the thin layer, which could not be justified in a limiting
procedure from genuine three-dimensional models.

6. SUMMARY

Two-dimensional field theory is a very appealing subject with many powerful
results. One reason for this is because every tensor and spinor field on a 2-manifold
decomposes into covariant primary fields which provide one-dimensional repre-
sentations of the corresponding symmetry groups. This holds even beyond the
realm of conformal transformations if the Beltrami parameters on the 2-manifold
are used to decompose tensors and spinors intocovariant primary fields, see Sec-
tions. 1 and 2 in Dick (1992) for tensors and Nicolai (1994) for spinors.

However, the assumption of strict two-dimensionality seems too restrictive
when it comes to comparisons with actual layers or surface structures in physics.
Conservative theoretical approaches to low-dimensional structures in physics and
technology therefore rely on genuine three-dimensional Hamiltonians and only
restrict the locations and momenta of particles to a surface or a layer (see, e.g.,
Section 9.2 in Madelung (1996)). In these approaches two-dimensionality is only
taken into account at a kinematical level, at the expense of sacrificing the powerful
methods and results of two-dimensional field theory.

On the other hand, recent results in brane theory taught us that straight-forward
combinations of four-dimensional terms and five-dimensional terms in action prin-
ciples yield interpolating Green’s functions on the brane, and it is apparent from
the functional integral representation that this property must also hold for higher
order correlation functions on the brane.

As mentioned above this cannot carry over directly to low-dimensional sys-
tems in condensed matter and statistical physics, but it initiated the present proposal
to use dimensionally hybrid HamiltoniansH = `h2+ H3 for theoretical investi-
gations of low-dimensional structures in physics.

Such an approach has the prospect to provide more realistic results than
strictly two-dimensional field theory, while at the same time utilizing the power of
two-dimensional field theory for the determination e.g. of equilibrium correlation
functions in the limiting cases̀→∞ or k`À 1.
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Further virtues of this approach are predictions on the transition behavior
between two-dimensional and three-dimensional distance laws in layers and sur-
face structures, and a better understanding on how two-dimensional structures
might be approached in the more conservative purely three-dimensional frame-
work, through studies of finite size effects on effective masses and permittivities
in three-dimensional models.

To illustrate the use and some straightforward consequences of dimension-
ally hybrid Hamiltonians a homogeneous layer and layers with strongly localized
potentials were studied. In these settings the fieldψ describes simultaneously bulk
particles of massM and excitations of massµ per transverse length in the layers.
These models might serve as an approximation to thin layers of semiconductors or
polar solids, where the planar modes would correspond to conduction band elec-
trons or large polarons. The model predicts a strong dependence of transmission
probabilities on longitudinal momentum.

The Green’s function in the model also yields a static potential which inter-
polates between the logarithmic two-dimensional distance law at distances¿ `

and the three-dimensional Coulomb law at distancesÀ `.
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